

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

email: info@irishdrilling.ie

Phone: (091) 841 274 Fax: (091) 880 861

PROPOSED DEVELOPMENT AT KEEL, ACHILL CO. MAYO

SITE INVESTIGATION REPORT

Mayo Co. Council, Aras an Chontae, The Mall, Castlebar, Co. Mayo.

December 2022 Job nr. 22MO113

Contents:

- 1.0 Introduction
- 2.0 The Site & Geology
- 3.0 Fieldwork
- 4.0 Ground Conditions 4.1 Groundwater
- 5.0 Foundations
 - 5.1 Retaining Walls
 - 5.2 Ground Bearing Slabs & Pavements
- 6.0 Excavations

Site Location Plan Borehole Location Plan

Appendix 1	Borehole Records
Appendix 2	Laboratory Test Results
Appendix 3	Photographs

1.0 Introduction.

Irish Drilling Ltd. was instructed by Mayo Co. Council, to carry out a site investigation on the site of a proposed developments, at Keel Beach, Achill, Co. Mayo.

The fieldwork was carried out between 27th September and 6th October 2022.

2.0 The Sites & Geology.

The site is located at 'The Sandbanks' adjacent to Keel Beach, about 800m east of Keel village. The site was greenfield at the time of this investigation.

Geological Survey maps of the area indicate that the site is generally underlain by Quartite (Metamorphic) and is close to the contact with the Schist & Gneiss Formation.

A Site Plan is included in this report and show the positions of the boreholes.

3.0 Fieldwork.

The fieldwork consisted of the following:

A borehole was bored on each site, by shell and auger (light cable percussion) methods. Standard Penetration Tests were carried out at approximately one metre intervals and samples were taken and returned to the laboratory for examination. The boreholes were terminated on 'refusal' which was most likely on boulders.

The boreholes was continued using rotary core wire-line drilling equipment (HQ-65mm diameter) and cores were recovered and returned to the laboratory for examination, and logging by an engineering geologist.

The borehole records are included in Appendix 1.

Laboratory testing was carried out on representative samples, consisting of natural moisture content, Atterberg limits, Particle Size Distribution and Point Load tests on rock samples. Sulphate & pH tests were carried out by ALS Laboratories. The laboratory results are included in Appendix 2.

Photographs of the rock cores are included in Appendix 3.

The borehole location was surveyed, to ITM co-ordinates, using a Trimble CU Bluetooth Total Station.

The fieldwork was carried out in accordance with BS5930 (2015): Code of Practice for Site Investigations.

4.0 Ground Conditions

The borehole encountered the following ground conditions:

Depth	Strata
GL-0.10m	Topsoil
0.10m - 3.00m	Medium dense silty sand, with cobbles
3.00m - 6.80m	Medium dense silty gravelly sand, with cobbles
6.80m - 7.00m	Soft peat
7.00m - 8.20m	Medium dense gravelly sand, with cobbles
8.20m - 12.90m	Dense grey silty sandy gravel, with cobbles
12.90m - 16.70m	Weak to medium strong schist

For detailed descriptions of the soils and rock, refer to Appendix 1.

4.1 Groundwater

Groundwater was encountered at the following depths:

Borehole	Date	Depth	Comments
Bh 1	27.9.'22	2.50m	Remained at 2.50m after 20 mins
	28.9.'22	2.50m	2.50m at 8am and at 11am

5.0 Foundations.

Consideration could be given to using pad or strip foundations for lightly loaded structures. At 0.60m depth, foundations may be designed using an allowable bearing pressure: of 100 kN/m^2 .

Consideration could also be given to piled foundations and the length of pile will depend on design loads, the pile type and diameter, and the nature of the underlying soils and rock. The presence of boulders should be noted with regard to possible difficulties using driven piles, as the shell and auger borehole 'refused' before reaching bedrock.

The advice of specialist piling contractors should be sought as to the feasibility of their type of pile.

5.1 Retaining Walls

For the design of retaining walls the following parameters may be used ⁽⁴⁾:

Strata	Unit Wt. saturated/dry	Cohesion (undrained)	Angle of internal friction
	kN/m ³	kPa	
Fill	22/20	0	20
Loose Sand and Gravel	20/16	0	30
Dense Sand and Gravel	21/17	0	35
Very soft organic clay/silt	14/6	10	0
Soft slightly organic clay	16/10	20	0
Firm sandy clay	17/12	40	0
Firm to stiff gravelly sandy silt	20/17	75	0
Stiff gravelly sandy silt	20/17	100	0
Very stiff gravelly sandy silt	20/17	200	0
Sandstone or Schist rock	24/24	1,000-5,000	40

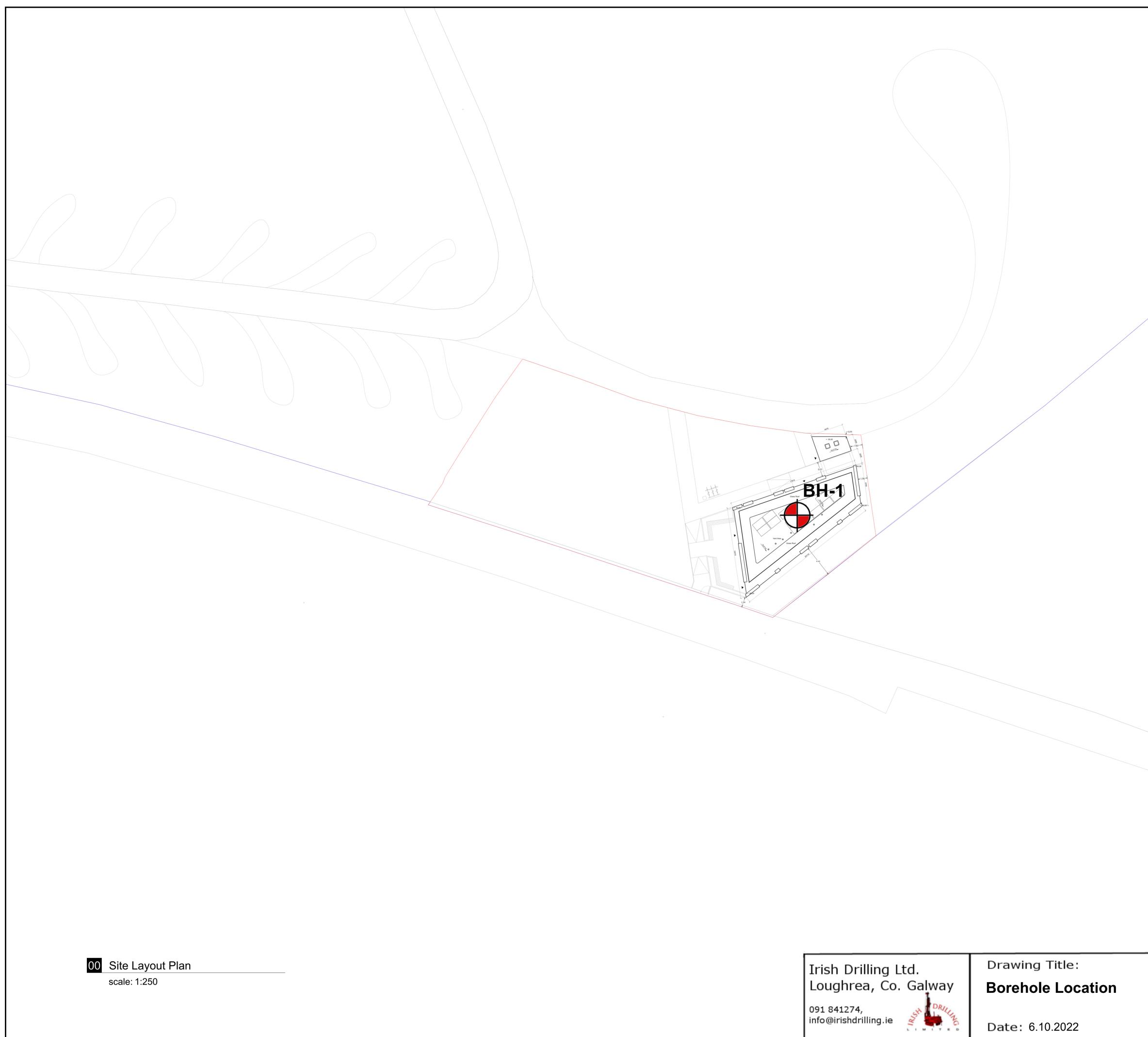
The results of Sulphate and pH tests indicate that the soils may be classed as DS-1⁽⁶⁾ and therefore no precautions are necessary with regard to protection of foundation concrete from chemical attack.

5.2 Ground Floor Slabs and Pavements

The overburden soils, after removal of topsoil and other organic material is considered suitable for the use of ground bearing slabs.

6.0 Excavations

Excavations in general are likely to be unstable and some form of side supports or battering of excavation sides may be necessary. The use of sumps and pumping may be necessary to maintain dry excavations. The close proximity of existing buildings, roads and services should be noted as excessive pumping is likely to cause settlement or movement of the structures.


In the interest of safety, personnel should not be allowed enter unsupported excavations deeper than 1.0m.

Declan Joyce B.E., M.Eng.Sc., C.Eng., M.I.E.I Chartered Geotechnical Engineer

REFERENCES:

- (1) B.S.5930:(1981), <u>Code of Practice for Site Investigation</u>.
- (2) B.S.1377:(1990), Methods of Test for Soils for Civil Engineering Purposes.
- (3) B.S.8004:(1986), <u>Foundations</u>.
- (4) Hoek E. & Bray J.W. (1991) <u>Rock Slope Engineering</u>. Revised 3rd ed. IMM
- (5) Stroud M.A. & Butler F.G. (1975) <u>The Standard Penetration Test and the Engineering Properties of Glacial Materials</u>. Proceedings of the Symposium held at the University of Birmingham 21-23 April 1975.
- (6) BRE Special Digest (1:2005) <u>Concrete in aggressive ground.</u>

	NOTES
	 GENERAL NOTES: 1. FIGURED DIMENSIONS ONLY TO BE TAKEN FROM THIS DRAWING. 2. ALL DRAWINGS TO BE CHECKED BY THE CONTRACTOR ON SITE 3. ENGINEER/EMPLOYERS REPRESENTATIVE, AS APPROPRIATE, TO BE INFORMED BY THE CONTRACTOR OF ANY DISCREPANCIES BEFORE ANY WORK COMMENCES 4. THE CONTRACTOR SHALL UNDERTAKE A THOROUGH CHECK FOR THE ACTUAL LOCATION OF ALL SERVICES/UTILITIES, ABOVE AND BELOW GROUND, BEFORE ANY WORK COMMENCES 5. ALL LEVELS SHOWN RELATE TO ORDNANCE SURVEY DATUM AT MALIN HEAD 6. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS. CONTRACTOR TO VERIFY THE ACCURACY OF THIS PROPOSAL TO THE ENGINEER AND ALLOW FOR MINOR CORRECTIONS AS DEEMED NECESSARY WITH A REASONABLE TIMEFRAME.
	SITE BOUNDARY shown thus
	Site Area:- 1244 m ² , 0.3074 Acres, 0.1244 Hectares ITM Co-Ordinates of site:- 463903, 804757 Ordnance Survey Ireland Licence No. CYAL50244098 © Ordnance Survey Ireland/Government of Ireland. OS Sheet No. 1641, 1642, 1710, 1711 Disconsister Survey National Mapping Agency
	P.01 Planning Issue AP MF 09.05.22 rev. modifications by chkd date Layout Ref. C:\Users\natas\OneDrive - Accelerating Change Together\Shared file Documents\15_Watersports Facility Development At Keel And Carramore\Working Files\CAD\Keel\6820-JOD-XX-XX-DR-C-200-002-003 P.01 Proposed Site Layout Plan.dwg
	client Comhairle Contae Mhaigh Eo Mayo County Council project
	PROPOSED DEVELOPMENT AT KEEL SANDYBANKS, ACHILL ISLAND, CO. MAYO
	stage PLANNING title SITE LAYOUT
	scale 1:250 @ A1
	surveyeddrawncheckeddateJODNTJMJuly 2022
	© COPYRIGHT OF JENNINGS O'DONOVAN & PARTNERS CONSULTING ENGINEERS, FINISKLIN, SLIGO, IRELAND. TEL. +353 (0)71 916 1416 FAX. +353 (0)71 916 1080 Email: info@jodireland.com
Drg. No.:	drawing no.revision6820-JOD-XX-ZZ-DR-C-700-002P.01

APPENDIX 1

BOREHOLE RECORDS

BOREHOLE LOG

Project Kee	el, Achil	1						1	Location					BOREH	IOLE	No
Job No		Det				Creation	d I 1 (hill, Co. May Ordinates ()	0			Bł	11	
об No 22MC)112	Date	27-09- 06-10-	-22		Groun	d Level (: 5.96		0-0	0	25 NION	17517				
Engineer	113		00-10	-22				DUNDW LIKES	ATER W		Rose to (@ 20 1		l at: S	heet 1	of 3	
Linginioor							516	IKES	1s 2n 3r	d:	2.50m			ev.	01 5	
SAM	PLES &	tESTS								ATA					_	ent/
Depth	Type No	Test Resul	lt	A ater	educed Level	Legend	Depth (Thick-			DE	SCRIPTIO	N			Geology	Instrument/
0.00-1.00	В				5.86	-	ness) 0.10		SOIL					/		
						 		Med cobb	lium dense oles.	e, brown, slig	htly silty, (n	nedium) S.	AND, wi	ith some		
1.00	CPT	N = 1:	5				-									
1.00-1.50	в	(2, 3, 5, 3,	4, 3)			:0: :¢										
1.00	D					. 0 . 0 . 0 0.	(2.90)									
2.00	СРТ	N = 1'				:0: . ·] 0:	-									
2.00-2.50	B D	(2, 3, 4, 4,														
2.00			-	÷												
3.00	СРТ	N = 1.	3	-	2.96	· • · · · · · · · · · · · · · · · · · ·	3.00		ium dense	, greyish bro	wn slightly	silty are	elly SAN	JD with		
3.00-3.50	В	N = 1. (4, 2, 3, 3,						some	e cobbles.		wn, sngnuy	siny, grav	cny SAN	with		
3.00	D					×. ×. ×.										
4.00	CPT	$N = 1^{7}$ (3, 5, 4, 4,					-									
4.00-4.50 4.00	B D	(-, -, -, -, -,	., .,			8: x										
						.Ŏ. ; _{\$} ;⊗: . ;	(2,00)									
5.00	СРТ	N = 19				ý v	(3.80)									
5.00-5.50	B	(6, 4, 5, 5,	5, 4)			× · · · · · · · · · · · · · · · · · · ·										
5.00	D					× . C 										
6.00	СРТ	N = 2	1			0. x 	-									
6.00 6.00-6.50	В	N = 2 (3, 4, 5, 4,				.8. xd										
6.00	D				0.07	.0. .x										
				╞	-0.84	<u>., .</u>	<u>6.80</u> 7.00	Soft	black PE							
7.00	CPT	N = 20 (2, 2, 2, 5,						Med	ium dense	to dense, dato to dense, dato to dense, dato to dense.	rk grey and	grey, sligh	tly grave	elly		
7.00-7.50 7.00	B D						(1.20)		,							
							(1.20)									
Borir	ng Prog	ress and				ons		<u> </u>	Chiselli	ng	Water	Added		GENE		
	Time	Depth	Ca Depth			Water (Depth	bgl) , m	From	То	Hours	From	То		REMA		
27-09-22	11.00 17.00	0.00 7.00	$0.00 \\ 7.00$	2	200	4.0							Refus 9.2m	sal of shell	l & aug	ger a
28-09-22	08.00	7.00	7.00	2	200	2.58	3									
	ns in Cli		Co. Coun			Method/					Bit	<u> </u>	iller	Logged		

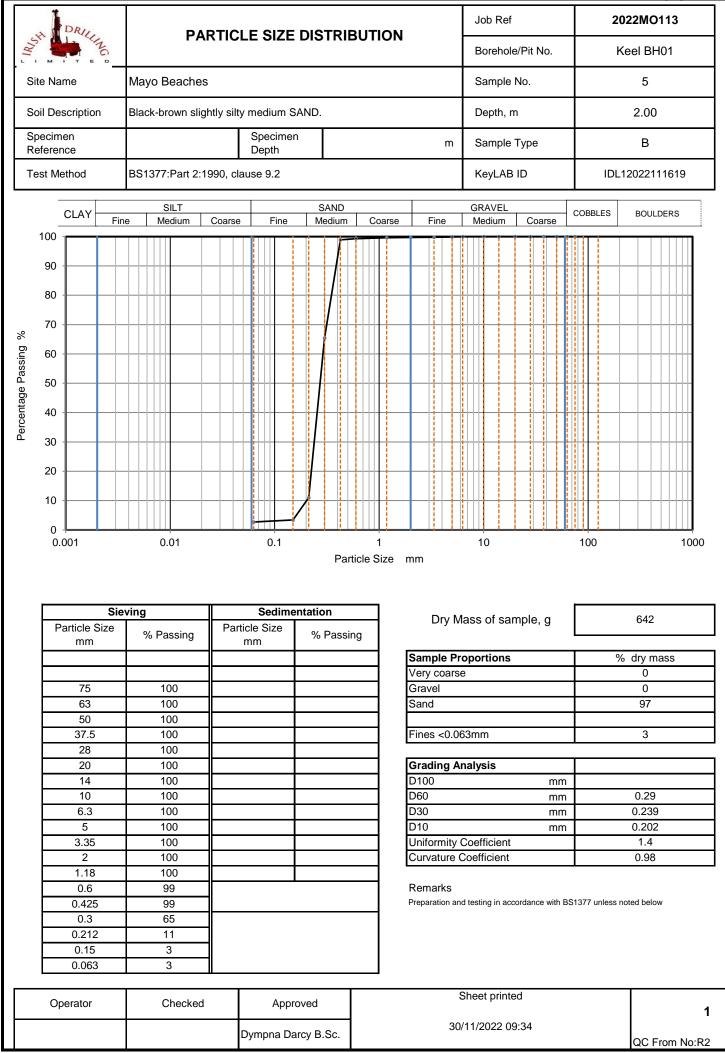
BOREHOLE LOG

Project Kee	el, Achi	ill						Loc	cation				I	BOREH	OLE	No
						1.7	1 (ll, Co. Mayo	0		_	Bł	11	
Job No	2112	Date 27-0)9-2	2	Grou		vel (m	OD)		dinates ()		4 7 5 1 7			••	
22M0 Engineer	5113	06-1	10-2	2		3	.96 GROU	NDWAT ES		er strikes: R	0.5 N 804 Rose to (@ 20 n	4,/J1./ nin.): Sealed at:	: sh	eet 2	of 3	
Engineer							STRIK	ES	2nd:	2.50m	2.50m	,			01 5	
		0 75070							3rd:	T •			Re	v.		
SAM		& TESTS	Water				epth		STRA	ΊA					SS	ment
Depth	Type No	Test Result	Wa	Reduced Level		(Thic ness)	-k-			DES	SCRIPTION	ł			Geology	Instrument/ Backfill
- 8.00	CPT	N = 33 (3, 6, 8, 8, 8, 9)		-2.24	0.		8.20	Danca	amore ailt	u condu CE	DAVEL wit	h some cobb	100			-
8.00-8.50 8.00	B D					(1.0		Dense,	grey, snt	y, sandy Or	CA ν EL, wit	n some cooo.	ies.			
9.00	СРТ	25 Seating Blows		-3.24	O SA		9.20									
		for 100 mm (15, 10)		-3.24	¥ ^ ¢		9.20	Boreho	le continu	ued as a Co	red Drillhol	e				1
Date 28-09-22	ng Prog Time 15.00 09.00	gress and Wate Depth Dept 9.20 9.20 9.20 9.00	Casir h 1	poservati poservati pia. mm 200 97		5	Frc 9.	m	niselling To	g Hours 1	Water From	Added To	Refusa 9.2m	GENE REMA al of shell	RKS	er at
All dimension metres Scale 1:50	ns in C	lient: Mayo Co. Co	ouncil		Methoo Plant U						Bit Design	Drille	er	Logged	By	

DRILLHOLE LOG

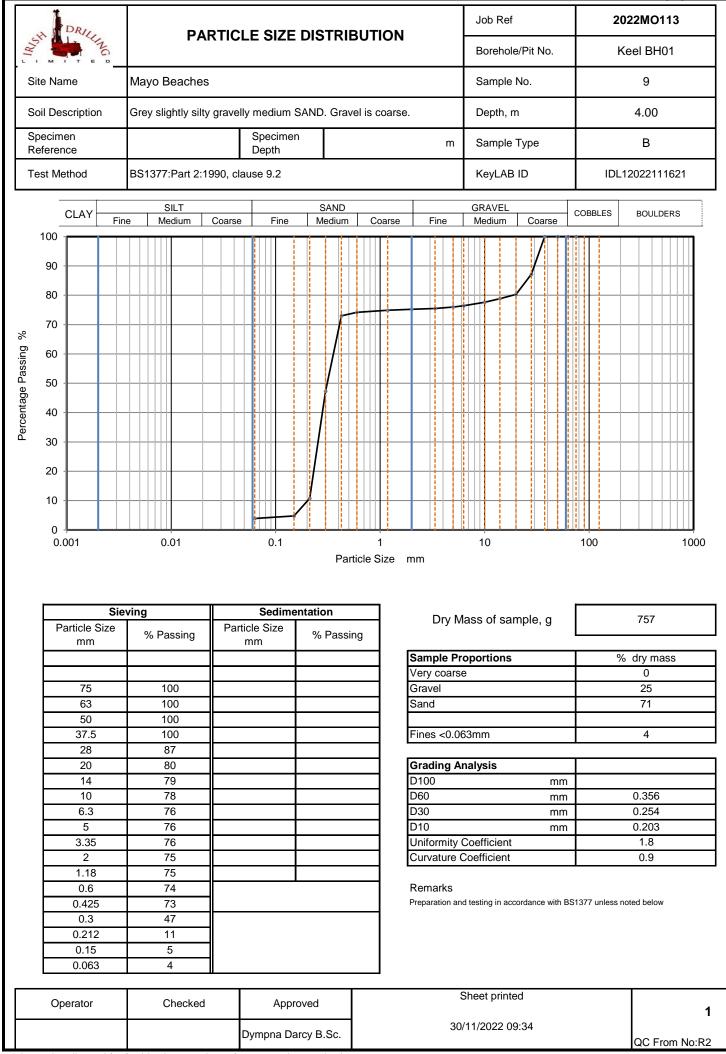
Project	Keel, A	Achill						Loca	tion]	DRILLH	IOLE	No
			D.				11 1/		el, Achill, C	-	0				Bł	11	
Job No		2	Date 27-	-09-22		Grou	ind Level (Co-Ordina	0			-			••	
	2MO11	3	06-	-10-22			5.96)	E 40	53,923	3.5 N 80)4,/51	./		heet	2 . 6	2
Engine	er														lev.	3 of	3
RU	N DET	AILS						S	STRATA								int/
Depth	TCR	(SPT)	Red'cd		Dept	h			DES	SCRII	PTION					Geology	Instrument/ Backfill
Date	(SCR) RQD	Fracture Spacing	Level	Legend	(Thick- ness)	Di	scontinuiti	es	Det	tail		Ν	lain			Geo	Insti Bac
<u>0</u> 6.09 -			-3.24	0.00	9.2	0					Subangular issorted sai						
-	66 (-)			0 j. 0 .0 0 0	2					0	GRAVEL,	with a li	ittle co	oarse s	and.		
-	-			0.0.0	L												
-				00.0	(3.70)												
10.50				·0 & 0 0 · 1 0	1												
				0000													
-	10				- 2 (3.70)												
-	40 (-)	-		0, 0, 0 0, 0, 0													
-	-				7												
12.00				0.00	ł												
- 12.00				0.0.0	⊱ 7												
F			_	0.00	F												
-				01.0	F												
-	60 (36)		-6.94	0000	12.9		<u> 00 - 16 7(</u>) Closely ar	nd locally ve		Weak to me	dium et	rong	thinly	foliated		
-	0	15		\sim	-	clo	osely space	d, dipping	10 to 15 deg	g's, g	grey and wl	nite fels	ic mic	a, fine	to		
Ē				\sim	- - -	ste	caceous si	oth, with 0. lt smear	5mm to 1m	m r	nedium gra	uned SC	THIST				
E				\sim	1 1 1												
14.00			_	\sim	- -												
Ē				\sim	-												
E	100	18			- - -												
-	(91) 32			\sim	(3.80)					1	4.6m - 14. ittle brown	7m: me silt	dium	strong	, with a		
F	32		—	$\left(\right)$								5110					
15 50					- - -												
- 15.50	/	20		\sim	-												
	100			\sim	-						5.7m - 16 QUARTZI	3m: vei	y stro	ng			
 	100 (78) 25		_		1- 4- 4-						ZOMICIZI		131011				
	25	16			1 1 1												
<u>06.10</u> 16.70				\sim	- 16.7	0											-
					F												
	Dril	ling Pro	gress and	⊥ Wate	r Ohse	rvati	ons			Rotar	y Flush				GENE	'P AT	
Date	Tim	- T		$\begin{array}{c} \text{Casing} \\ \text{h} & \text{D} \end{array}$		re Dia		ater Standing	From (m)	1		Return	n (%)		REMA		
28-09-2	2 15.0	0 9.2	.0 9.20) 20	00	mm	JUIKE	2.50		Ì					sal of shell	& aug	er at
06-10-2	2 09.0 2 17.0	00 9.2 00 16.') 9) 9		65 65		2.50 2.50						9.2m	1	-	
6																	
<u>ة</u>																	
Date 28-09-2 06-10-2 06-10-2 06-10-2	ensions ir	1 Client	Mayo Co. C	Touncil	,	Metho					Bit		Dril		Logged	By	
me Scal	etres le 1:50		1114y0 CO. C	Juneir		Plant U					Design					. Б у	

APPENDIX 2


LABORATORY TEST RESULTS

Irish Drilling Ltd

CONTRACT:		Keel Achill												Sack:					edule			
Client		Mayo Co. C	ouncil															Date	ə:		16.1	11.22
Engineer																			edule	ed B I	DJ	
			Classific	cation				Earthwo	rks	* Specify	y Ramme	r	Settlement	Strength				Cher	nical			
BH/TP No.	Sample Type	Sample Depth	MC (%)	Atterber g Limits	Bulk Density	PSD	Hydro	5-point MCV	CBR 1 point*	MCV 1 Point	5 Point Comp only*	5 Point Comp with CBR*	Consol (Oed)	Triaxial (Q-U)	Triaxial (Con-U)	FALL CONE	Shear Box	SO3	Hd	Chloride	Organic Conten	Remarks/Loading
BH 1	В	0.0 - 1.0																				
	D	1.00	1																			
	В	1.0 - 1.5																				
	D	2.00	1			1																
	В	2.0 - 2.5																1	1	1		ALS 221123-176
	D	3.00	1																			
	В	3.0 - 3.5																				
	D	4.00	1			1																
	В	4.0 - 4.5																				
	D	5.00	1																			
	В	5.0 - 5.5																				
	D	6.00	1																			
	В	6.0 - 6.5																				
	D	7.00	1	1																		
	В	7.0 - 7.5																				
	D	8.00	1																			
	В	8.0 - 8.5																				
	D	9.00	1																			
Tests scheduled: Test completed			9 9	1 1	0 0	2 2	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1	1 1	1 1	0 0	0


100	DR	111nC				Summary	of Cla	assi	ificat	tion T	est R	lesı	ılts		
Project No. 2022			Project	Name	1			Mayo	Beach	es					
		Sa	nple	1			Dens bulk	ity dry	w	Passing 425µm	LL	PL	PI	Particle density	
Hole No.	Ref	Тор	Base	Туре		Soil Description	Ma/n		%	%	%	%	%	Ma/m3	Remarks
Keel BH01	2	1.00		D		Yellow-brown medium SAND.			26.0						
Keel BH01	4	2.00		D		Blackish-grey medium SAND.			18.0						
Keel BH01	5	2.00	2.50	В		Black-brown slightly silty medium SAND.			17.0	99					
Keel BH01	6	3.00		D		Brownish-grey slightly gravelly sandy SILT.			11.0						
Keel BH01	8	4.00		D		Grey slightly silty sandy medium GRAVEL.			26.0						
Keel BH01	9	4.00	4.50	В		Grey slightly silty gravelly medium SAND. Gravel is coarse.			20.0	73					
Keel BH01	10	5.00		D		Grey slightly silty gravelly SAND.			20.0						
Keel BH01	12	6.00		D		Grey slightly gravelly sandy SILT.			16.0						
Keel BH01	14	7.00		D		Grey slightly gravelly silty medium SAND.			23.0	98					NP
Keel BH01	16	8.00		D		Grey sandy very silty coarse GRAVEL.			4.1						
Keel BH01	18	9.00		D		Dark grey sandy very silty coarse GRAVEL.			4.3						
All tests perf	ormed	l in acco	rdance v	vith BS	61377	:1990 unless specified othe	rwise					•			
		ontent, L	L = Liqu			= Plastic Limit, PI = Plastic		x	Date F	Printed		Appr	oved	Ву	Table
wd - wa	neasure er displ	ment unles acement	s:	Liquid I 4pt con 1pt - sin NP - No	e unles ngle poi	s: sp-sn nt test gj-ga	e density nall pyknom s jar	neter		30/11/20 rom No		1	SC	Ъ	1 sheet 1
wi-imm						ic Loughrea Co Galway Irel:									I I

Tested in: Irish Drilling Ltd.(IDL), Old Galway Road, Loughrea, Co. Galway, Ireland. H62VX39 Approved Signatures: Dympna Darcy (DCD) Lab Manager, Declan Joyce (DJ) Chartered Geotechnical Engineer, Ronan Killeen (RK) Quality Manager.

Tested in: Irish Drilling Ltd.(IDL), Old Galway Road, Loughrea, Co. Galway, Ireland. H62VX39

Approved Signatures: Dympna Darcy (DCD) Lab Manager, Declan Joyce (DJ) Chartered Geotechnical Engineer, Ronan Killeen (RK) Quality Manager.

Tested in: Irish Drilling Ltd.(IDL), Old Galway Road, Loughrea, Co. Galway, Ireland. H62VX39

Approved Signatures: Dympna Darcy (DCD) Lab Manager, Declan Joyce (DJ) Chartered Geotechnical Engineer, Ronan Killeen (RK) Quality Manager.

IDL		DR ¹ STW1	HING				Poi					h Ind Resi		Fest	5			
Project No.				Project N	lame						-							
20	22MO1 ⁻	13				1				Mayo	Beach	nes						1
Borehole		Sample		Spe	cimen	Rock Type and	Test see l	Type SRM	Failure Valid (Y/N)		Dime	ensions		Force P	Equivalent diameter, De		t Load th Index	(including water
No.	Top Depth m	Base Depth m	Туре	Top m	Base	Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure V	Lne	W	Dps mm	Dps' mm	kN	a Equiva	Is MPa	Is(50) MPa	content if measured)
Keel	12.00	14	с	13	13.10		D	U	YES		63.4		63.4	1.1	63.4	0.3	0.3	Weak
Keel	14.00	15.5	с	14.1	14.20		D	U	YES		63.4		63.4	0.7	63.4	0.2	0.2	Weak
Keel	14.00	15.5	с	15.1	15.20		D	U	YES		63.4		63.4	1.3	63.4	0.3	0.3	Weak
Keel	15.50	16.7	с	16.1	16.20		D	U	YES		63.4		63.4	3.5	63.4	0.9	1.0	Medium Strong
Test Type D - Diametral, A Direction L - parallel to pla P - perpendicular U - unknown or r Dimensions Dps - Distance b Dps' - at failure (Lne - Length fror W - Width of sh	nes of we r to plane andom etween p see ISRN n platens	akness s of weak latens (p 1 note 6) to neares	aness laten se st free e	eparation) end	ad, P		D _{ps}	iamet ∢	↓P ▼		D _{ps}			•	ne 🚬	M		P D _{ps}
Test performed in Detailed legend f Size factor, F =	for test ar	d dimens	sions, b			007, unless noted of n above.	herwise	9			Date F 30	Printed 0/11/20	22	Appro		Ь	Table sheet	1

Tested in: Irish Drilling Ltd.(IDL), Old Galway Road, Loughrea, Co. Galway, Ireland. H62VX39 Approved Signatures: Dympna Darcy (DCD) Lab Manager, Declan Joyce (DJ) Chartered Geotechnical Engineer, Ronan Killeen (RK) Quality Manager.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528777 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Irish Drilling Limited Old Galway Road Loughrea Co. Galway

Attention: Dympna Darcy

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 29 November 2022 Irish Drilling Limited 221123-176 22MO113 Mayo Beaches 670153 11880

We received 2 samples on Wednesday November 23, 2022 and 2 of these samples were scheduled for analysis which was completed on Tuesday November 29, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

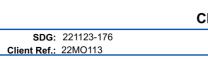
Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.


Approved By:

Sonia McWhan Operations Manager

ALS Laboratories (UK) Limited. Registered Office: Torrington Avenue, Coventry CV4 9GU. Registered in England and Wales No. 02391955.

Version: 3.5

Report Number: 670153 Location: Mayo Beaches Superseded Report:

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
27205921	KeelBH01	B5	2.00 - 2.50	27/09/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

								Validate
ALS -	SDG:	221123-176	С	ERT	Report Number:		Superseded Report:	
_	Client Ref.:	22MO113				Mayo Beaches		
Results Legend X Test N No Determin Possible	nation	Lab Sample N	No(s)	27205921				
		Custome Sample Refer		KeelBH01				
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate		AGS Refere	nce	B5				
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage		Depth (m)	2.00 - 2.50				
RE - Recreational Water DW - Drinking Water Non-r UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	r regulatory	Containe	r	250g Amber Jar (ALE210)				
		Sample Ty	ре	S				
Anions by Kone (soil)		All	NDPs: 0 Tests: 2	x				
рН		All	NDPs: 0 Tests: 2	x				
Sample description		All	NDPs: 0 Tests: 2	x				

Report Number: 670153 Location: Mayo Beaches Superseded Report:

Validated

Sample Descriptions

Grain Sizes																	
very fine	very fine <0.063mm fine		0.063	063mm - 0.1mm m		edium 0.1mm		- 2mm coars		se 2mm - 10mm		0mm	very coarse		>10m	ım	
Lab Sample	No(s)	Custom	er Sample Re	ef.	Depth (m)	1	Co	our	Descrip	tion	Inc	lusions	Inclu	usions 2			
27205921			KeelBH01		2.00 - 2.50		Light Brown		Sand		None		I	None			

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 221123-176 Client Ref.: 22MO113

CERTIFICATE OF ANALYSIS Report Number: 670153

Location: Mayo Beaches

Superseded Report:

 Results Legend

 # ID017025 accredited.

 M mCRETs accredited.

 aq.uous/settled sample.

 tdss.fill Dissolved filtered sample.

 Subcontracted - refer to subcontractor report for accreditation status.

 "% recovery of the surgate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery

 (F) Trigger breach confirmed 1:44§@ Sample deviation (see appendix)

 Component
 Customer Sample Ref **Results Legend** KeelBH01 Depth (m) Sample Type Date Sampled 2.00 - 2.50 Soil/Solid (S) 27/09/2022 Sample Time Date Received . 23/11/2022 221123-176 27205921 SDG Ref Lab Sample No.(s) AGS Reference B5 Component LOD/Units Method Moisture Content Ratio (% of as PM024 23 % received sample) pН 1 pH Units TM133 9.11 @ M Water Soluble Sulphate as SO4 2:1 TM243 0.0212 <0.004 g/l Extract @ M Chloride (soluble) <5 mg/kg TM243 16.4 @ M

Validated

SDG: 221123-176 Client Ref.: 22MO113

Report Number: 670153 Location: Mayo Beaches

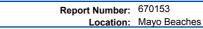

Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM243		Mixed Anions In Soils By Kone

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Superseded Report:

Test Completion Dates

Lab Sample No(s)	27205923	27205921
Customer Sample Ref.	CarrowmoreBH01	KeelBH01
AGS Ref.	B7	B5
Depth	3.00 - 3.50	2.00 - 2.50
Туре	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (soil)	29-Nov-2022	29-Nov-2022
рН	28-Nov-2022	28-Nov-2022
Sample description	24-Nov-2022	24-Nov-2022

221123-176 22MO113 Report Number: 670153 Location: Mayo Beaches Superseded Report:

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.</p>

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name				
Chrysof le	White Asbesbs				
Amosite	Brow n Asbestos				
Cio d dolite	Blue Asbe stos				
Fibrous Act nolite	-				
Fibious Anthophyllite	-				
Fibrous Tremolite	-				

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of $<3 \ \mu m$ diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX 3

PHOTOGRAPHS

